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Abstract----A large number of contributions in the literature have been proposed for item set mining, exploring various measures according to the 
chosen relevance criteria. However, items are actually different in many aspects in a number of real applications, such as retail marketing, network log, 
etc. The difference between items makes a strong impact on the decision making in these applications. Therefore, traditional ARM cannot meet the 
demands arising from these applications. By considering the different values of individual items as utilities, parallel mining focuses on identifying the 
itemsets with high utilities.The parallel mining of high utility itemsets will take very less time than mining with the single system over large number of 

transactions. The most studied measure is probably the number of frequent item sets processed in import and export business process. While the 
problem has been widely studied, only few solutions scale. This is particularly the case when i) the data set is massive, calling for large-scale 
distribution, ii) the length 𝑘𝑘 of the informative item set to be discovered is high and/or iii) the data are dynamic. In this paper, we address the problem of 
parallel mining of large informative 𝑘𝑘-High Utility item sets (liki) based on joint entropy. We propose advanced FPHIKS (Fast Parallel Highly Informative 
𝑘𝑘-High Utility item sets) a highly scalable, parallel liki mining algorithm and forward selection algorithm. FPHIKS renders the mining process of large 
scale databases (up to double or treble terabytes of data) succinct and effective. Its mining process is made up of only two efficient parallel jobs. With 
FPHIKS, we provide a set of significant optimizations for calculating the joint entropies of liki having different sizes, which drastically reduces the 
execution time of the mining process.  

Index Terms— Data Mining, Fast Algorithm, Association Rule, Business Process, K-Item Set, Big Data, Utility mining, high utility itemset mining.   

———————————————————— 

1 INTRODUCTION 

Feature set, or itemset, mining [1] is one of 
the fundamental building bricks for exploring 
informative patterns in databases. Features might 
be, for instance, the words occurring in a document, 
the score given by a user to a movie on a social 
network, or the characteristics of plants (growth, 
genotype, humidity, biomass, etc.) in a scientific 
study in agronomics. However, frequency does not 
give relevant results for a various range of 
applications, including information retrieval [3], 
since it does not give a complete overview of the 
hidden correlations between the itemsets in the 
database. This is particularly the case when the 
database is sparse [4]. Using other criteria to assess 
the informativeness of an itemset could result in 
discovering interesting new patterns that were not 
previously known. To this end, information theory 
[5] gives us strong supports for measuring the 
informativeness of itemsets. One of the most 
popular measures is the joint entropy of an itemset. 

An itemset 𝑋𝑋 that has higher joint entropy brings up 
more information about the objects in the database. 

For more efficiency, we provide PHIKS 
with optimizations that allow for very significant 
improvements of the whole process of liki mining. 
The first technique estimates the upper bound of a 
given set of candidates and allows for a dramatic 
reduction of data communications, by filtering 
unpromising itemsets without having to perform 
any additional scan over the data. The second 
technique reduces significantly the number of scans 
over the input database of each mapper, i.e., only 
one scan per step, by incrementally computing the 
joint entropy of candidate features. This reduces 
drastically the work that should be done by the 
mappers, and thereby the total execution time. 

2 BACKGROUNDS 

Liki Discovery in a Centralized 
Environment an effective approach is proposed for 
liki discovery in a centralized environment. Their 
Forward Selection heuristic uses a "generating-
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pruning" approach, which is similar to the principle 
of Apriori. 𝑖𝑖1, the feature having the highest entropy 
is selected as a seed. Then, 𝑖𝑖1 is combined with all 
the remaining features, in order to build candidates. 
In other words, there will be ∣ℱ − 1∣ candidates (i.e., 
(𝑖𝑖1, 𝑖𝑖2),(𝑖𝑖1, 𝑖𝑖3),...,(𝑖𝑖1, 𝑖𝑖∣ℱ−1∣)). The entropy of each 
candidate is given by a scan over the database, and 
the candidate having the highest entropy, say (𝑖𝑖1, 
𝑖𝑖2), is kept. A set of ∣ℱ − 2∣ candidates of size 3 is 
generated (i.e., (𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3),(𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖4),...,(𝑖𝑖1, 𝑖𝑖2, 
𝑖𝑖∣ℱ−2∣)) and their entropy is given by a new scan 
over the database. This process is repeated until the 
size of the extracted itemset is 𝑘𝑘.

 

Such an inadequacy calls for new distributed 
algorithmic principles. To the best of our 
knowledge, there is no previous work on distributed 
mining of liki. However, we may build on top of 
cutting edge studies in frequent itemset mining, 
while considering the very demanding 
characteristics of liki. Interestingly, in the case of 
frequent itemsets in MapReduce, a mere algorithm 
consisting of two jobs outperforms most existing 
solutions by using the principle of SON, a divide 
and conquer algorithm. Unfortunately, despite its 
similarities with frequent itemset mining, the 
discovery of liki is much more challenging. Indeed, 
the number of occurrences of an itemset 𝑋𝑋 in a 
database 𝒟𝒟 is additive and can be easily distributed 
(the global number of occurrences of 𝑋𝑋 is simply 
the sum of its local numbers of occurrences on 
subsets of 𝒟𝒟). Entropy is much more combinatorial 
since it is based on the projection counting of 𝑋𝑋 in 

𝒟𝒟 and calls for efficient algorithmic advances, 
deeply combined with the principles of distributed 
environments. 

3 PHIKS ALGORITHM 

However, given the "generating-pruning" 
principle of this heuristic, it is not suited for 
environments like Spark or MapReduce and would 
lead to very bad performances. The main reason is 
that each scan over the data set is done through a 
distributed job (ı.e., there will be 𝑘𝑘 jobs, one for 
each generation of candidates that must be tested 
over the database). Our experiments, in Section V, 
give an illustration of the catastrophic response 
times of ForwardSelection in a straightforward 
implementation on MapReduce (the worst, for all of 
our settings). This is not surprising since most 
algorithms designed for a centralized itemset 
mining do not perform well in massively distributed 
environments in a direct implementation and liki 
don’t escape that rule.  

3.1 DISTRIBUTED PROJECTION COUNTING 

Its need to provide tools for computing the 
projection of an itemset 𝑋𝑋 on a database 𝒟𝒟, when 𝒟𝒟 
is divided into subsets on different splits, in a 
distributed environment, and entropy has to be 
encoded in the key-value format. We have to count, 
for each projection 𝑝𝑝 of 𝑋𝑋, its number of 
occurrences on 𝒟𝒟. This can be solved with an 
association of the itemset as a key and the 
projection as a value. On a split, for each projection 
of an itemset 𝑋𝑋, 𝑋𝑋 is sent to the reducer as the key 
coupled with its projection. The reducer then counts 
the number of occurrences, on all the splits, of each 
(key value) couple and is therefore able to calculate 
the entropy of each itemset. Communications may 
be optimized by avoiding to emit a : 𝑣𝑣𝑎𝑎𝑙𝑙 couple 
when the projection does not appear in the 
transaction and is only made of ’0’ (on the reducer, 
the number of times that a projection 𝑝𝑝 of 𝑋𝑋 does 
not appear in 𝒟𝒟 is determined by subtracting the 
number projections of 𝑋𝑋 in 𝐷𝐷 from |𝒟𝒟|). 
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3.2 DISCOVERING LIKI IN TWO ROUNDS 

Our heuristic will use at most two 
MapReduce jobs in order to discover the 𝑘𝑘-itemset 
having the highest entropy. The goal of the first job 
is to extract locally, on the distributed subsets of 𝒟𝒟, 
a set of candidate itemsets that are likely to have a 
high global entropy. To that end, we apply the 
principle of Forward Selection locally, on each 
mapper, and grow an itemset by adding a new 
feature at each step. After the last scan, for each 
candidate itemset 𝑋𝑋 of size 𝑘𝑘 we have the projection 
counting of 𝑋𝑋 on the local data set.  

4 FORWARD BACKWARD ALGORITHMS 

The term forward–backward algorithm is 
also used to refer to any algorithm belonging to the 
general class of algorithms that operate on sequence 
models in a forward–backward manner. In this 
sense, the descriptions in the remainder of this 
article refer but to one specific instance of this class. 
forward–backward algorithm computes a set of 
forward probabilities which provide, for all 

, the probability of ending up in 
any particular state given the first  observations in 

the sequence, i.e. . In the second 
pass, the algorithm computes a set of backward 
probabilities which provide the probability of 
observing the remaining observations given any 

starting point , i.e. . These two 
sets of probability distributions can then be 
combined to obtain the distribution over states at 
any specific point in time given the entire 
observation sequence. 

The forward and backward steps may also 
be called "forward message pass" and "backward 
message pass" - these terms are due to the message- 

passing used in general belief 
propagation approaches. At each single observation 
in the sequence, probabilities to be used for 
calculations at the next observation are computed. 
The smoothing step can be calculated 

simultaneously during the backward pass. This step 
allows the algorithm to take into account any past 
observations of output for computing more accurate 
results. 

The problem of extracting informative 
itemsets was not only proposed for mining static 
databases. There have been also interesting works in 
extracting informative itemsets in data streams. The 
authors of [8] proposed an efficient method for 
discovering maximally informative itemsets (i.e., 
highly informative itemsets) from data streams 
based on sliding window. Parallel mining of 
informative itemsets from large databases based on 
frequency informativeness measure has received 
much attention recently.  

Forward(guessState, sequenceIndex): 

ifsequenceIndex is past the end of the sequence, 
return 1 

if (guessState, sequenceIndex) has been seen before, 
return saved result 

result = 0 

for each neighboring state n: 

result = result + (transition probability from 
guessState to  

n given observation element at sequenceIndex) 

                        * Backward(n, sequenceIndex+1) 

save result for (guessState, sequenceIndex) 

return result 

However, and to the best of our knowledge, 
there has been no prior work on parallel discovery 
of maximally informative 𝑘𝑘-itemsets from massive, 
distributed, databases. 
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5 CONCLUSIONS 

In this paper, we proposed a reliable and 
efficient parallel maximally informative 𝑘𝑘-itemset 
algorithm namely PHIKS, that has shown 
significant efficiency in terms of runtime and 
scalability. PHIKS elegantly determines liki in very 
large databases with at most two rounds. With 
PHIKS, we propose a bunch of optimizing 
techniques that renders the liki mining process very 
fast. These techniques concern the architecture at a 
global scale, but also the computation of entropy on 
distributed nodes, at a local scale. The result is a 
fast and efficient discovery of liki with high itemset 
size. Such ability to use high itemset size is 
mandatory when dealing with Big Data. 
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