
International Journal of Scientific & Engineering Research, Volume 7, Issue 11, November-2016 1
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Fast and Parallel Mining of K High Utility
Item Set

R.Kanimozhi, HOD in Computer Applications, Idhaya College for Women, Kumbakonam

Dr.K.Saravanan, Dean, Faculty of Computer Science, PRIST UNIVERSITY, Vallam, Thanjavur.

Abstract----A large number of contributions in the literature have been proposed for item set mining, exploring various measures according to the
chosen relevance criteria. However, items are actually different in many aspects in a number of real applications, such as retail marketing, network log,
etc. The difference between items makes a strong impact on the decision making in these applications. Therefore, traditional ARM cannot meet the
demands arising from these applications. By considering the different values of individual items as utilities, parallel mining focuses on identifying the
itemsets with high utilities.The parallel mining of high utility itemsets will take very less time than mining with the single system over large number of

transactions. The most studied measure is probably the number of frequent item sets processed in import and export business process. While the
problem has been widely studied, only few solutions scale. This is particularly the case when i) the data set is massive, calling for large-scale
distribution, ii) the length 𝑘𝑘 of the informative item set to be discovered is high and/or iii) the data are dynamic. In this paper, we address the problem of
parallel mining of large informative 𝑘𝑘-High Utility item sets (liki) based on joint entropy. We propose advanced FPHIKS (Fast Parallel Highly Informative
𝑘𝑘-High Utility item sets) a highly scalable, parallel liki mining algorithm and forward selection algorithm. FPHIKS renders the mining process of large
scale databases (up to double or treble terabytes of data) succinct and effective. Its mining process is made up of only two efficient parallel jobs. With
FPHIKS, we provide a set of significant optimizations for calculating the joint entropies of liki having different sizes, which drastically reduces the
execution time of the mining process.

Index Terms— Data Mining, Fast Algorithm, Association Rule, Business Process, K-Item Set, Big Data, Utility mining, high utility itemset mining.

————————————————————

1 INTRODUCTION

Feature set, or itemset, mining [1] is one of
the fundamental building bricks for exploring
informative patterns in databases. Features might
be, for instance, the words occurring in a document,
the score given by a user to a movie on a social
network, or the characteristics of plants (growth,
genotype, humidity, biomass, etc.) in a scientific
study in agronomics. However, frequency does not
give relevant results for a various range of
applications, including information retrieval [3],
since it does not give a complete overview of the
hidden correlations between the itemsets in the
database. This is particularly the case when the
database is sparse [4]. Using other criteria to assess
the informativeness of an itemset could result in
discovering interesting new patterns that were not
previously known. To this end, information theory
[5] gives us strong supports for measuring the
informativeness of itemsets. One of the most
popular measures is the joint entropy of an itemset.

An itemset 𝑋𝑋 that has higher joint entropy brings up
more information about the objects in the database.

For more efficiency, we provide PHIKS
with optimizations that allow for very significant
improvements of the whole process of liki mining.
The first technique estimates the upper bound of a
given set of candidates and allows for a dramatic
reduction of data communications, by filtering
unpromising itemsets without having to perform
any additional scan over the data. The second
technique reduces significantly the number of scans
over the input database of each mapper, i.e., only
one scan per step, by incrementally computing the
joint entropy of candidate features. This reduces
drastically the work that should be done by the
mappers, and thereby the total execution time.

2 BACKGROUNDS

Liki Discovery in a Centralized
Environment an effective approach is proposed for
liki discovery in a centralized environment. Their
Forward Selection heuristic uses a "generating-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 11, November-2016 2
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

pruning" approach, which is similar to the principle
of Apriori. 𝑖𝑖1, the feature having the highest entropy
is selected as a seed. Then, 𝑖𝑖1 is combined with all
the remaining features, in order to build candidates.
In other words, there will be ∣ℱ − 1∣ candidates (i.e.,
(𝑖𝑖1, 𝑖𝑖2),(𝑖𝑖1, 𝑖𝑖3),...,(𝑖𝑖1, 𝑖𝑖∣ℱ−1∣)). The entropy of each
candidate is given by a scan over the database, and
the candidate having the highest entropy, say (𝑖𝑖1,
𝑖𝑖2), is kept. A set of ∣ℱ − 2∣ candidates of size 3 is
generated (i.e., (𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3),(𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖4),...,(𝑖𝑖1, 𝑖𝑖2,
𝑖𝑖∣ℱ−2∣)) and their entropy is given by a new scan
over the database. This process is repeated until the
size of the extracted itemset is 𝑘𝑘.

Such an inadequacy calls for new distributed
algorithmic principles. To the best of our
knowledge, there is no previous work on distributed
mining of liki. However, we may build on top of
cutting edge studies in frequent itemset mining,
while considering the very demanding
characteristics of liki. Interestingly, in the case of
frequent itemsets in MapReduce, a mere algorithm
consisting of two jobs outperforms most existing
solutions by using the principle of SON, a divide
and conquer algorithm. Unfortunately, despite its
similarities with frequent itemset mining, the
discovery of liki is much more challenging. Indeed,
the number of occurrences of an itemset 𝑋𝑋 in a
database 𝒟𝒟 is additive and can be easily distributed
(the global number of occurrences of 𝑋𝑋 is simply
the sum of its local numbers of occurrences on
subsets of 𝒟𝒟). Entropy is much more combinatorial
since it is based on the projection counting of 𝑋𝑋 in

𝒟𝒟 and calls for efficient algorithmic advances,
deeply combined with the principles of distributed
environments.

3 PHIKS ALGORITHM

However, given the "generating-pruning"
principle of this heuristic, it is not suited for
environments like Spark or MapReduce and would
lead to very bad performances. The main reason is
that each scan over the data set is done through a
distributed job (ı.e., there will be 𝑘𝑘 jobs, one for
each generation of candidates that must be tested
over the database). Our experiments, in Section V,
give an illustration of the catastrophic response
times of ForwardSelection in a straightforward
implementation on MapReduce (the worst, for all of
our settings). This is not surprising since most
algorithms designed for a centralized itemset
mining do not perform well in massively distributed
environments in a direct implementation and liki
don’t escape that rule.

3.1 DISTRIBUTED PROJECTION COUNTING

Its need to provide tools for computing the
projection of an itemset 𝑋𝑋 on a database 𝒟𝒟, when 𝒟𝒟
is divided into subsets on different splits, in a
distributed environment, and entropy has to be
encoded in the key-value format. We have to count,
for each projection 𝑝𝑝 of 𝑋𝑋, its number of
occurrences on 𝒟𝒟. This can be solved with an
association of the itemset as a key and the
projection as a value. On a split, for each projection
of an itemset 𝑋𝑋, 𝑋𝑋 is sent to the reducer as the key
coupled with its projection. The reducer then counts
the number of occurrences, on all the splits, of each
(key value) couple and is therefore able to calculate
the entropy of each itemset. Communications may
be optimized by avoiding to emit a : 𝑣𝑣𝑎𝑎𝑙𝑙 couple
when the projection does not appear in the
transaction and is only made of ’0’ (on the reducer,
the number of times that a projection 𝑝𝑝 of 𝑋𝑋 does
not appear in 𝒟𝒟 is determined by subtracting the
number projections of 𝑋𝑋 in 𝐷𝐷 from |𝒟𝒟|).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 11, November-2016 3
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

3.2 DISCOVERING LIKI IN TWO ROUNDS

Our heuristic will use at most two
MapReduce jobs in order to discover the 𝑘𝑘-itemset
having the highest entropy. The goal of the first job
is to extract locally, on the distributed subsets of 𝒟𝒟,
a set of candidate itemsets that are likely to have a
high global entropy. To that end, we apply the
principle of Forward Selection locally, on each
mapper, and grow an itemset by adding a new
feature at each step. After the last scan, for each
candidate itemset 𝑋𝑋 of size 𝑘𝑘 we have the projection
counting of 𝑋𝑋 on the local data set.

4 FORWARD BACKWARD ALGORITHMS

The term forward–backward algorithm is
also used to refer to any algorithm belonging to the
general class of algorithms that operate on sequence
models in a forward–backward manner. In this
sense, the descriptions in the remainder of this
article refer but to one specific instance of this class.
forward–backward algorithm computes a set of
forward probabilities which provide, for all

, the probability of ending up in
any particular state given the first observations in

the sequence, i.e. . In the second
pass, the algorithm computes a set of backward
probabilities which provide the probability of
observing the remaining observations given any

starting point , i.e. . These two
sets of probability distributions can then be
combined to obtain the distribution over states at
any specific point in time given the entire
observation sequence.

The forward and backward steps may also
be called "forward message pass" and "backward
message pass" - these terms are due to the message-

passing used in general belief
propagation approaches. At each single observation
in the sequence, probabilities to be used for
calculations at the next observation are computed.
The smoothing step can be calculated

simultaneously during the backward pass. This step
allows the algorithm to take into account any past
observations of output for computing more accurate
results.

The problem of extracting informative
itemsets was not only proposed for mining static
databases. There have been also interesting works in
extracting informative itemsets in data streams. The
authors of [8] proposed an efficient method for
discovering maximally informative itemsets (i.e.,
highly informative itemsets) from data streams
based on sliding window. Parallel mining of
informative itemsets from large databases based on
frequency informativeness measure has received
much attention recently.

Forward(guessState, sequenceIndex):

ifsequenceIndex is past the end of the sequence,
return 1

if (guessState, sequenceIndex) has been seen before,
return saved result

result = 0

for each neighboring state n:

result = result + (transition probability from
guessState to

n given observation element at sequenceIndex)

 * Backward(n, sequenceIndex+1)

save result for (guessState, sequenceIndex)

return result

However, and to the best of our knowledge,
there has been no prior work on parallel discovery
of maximally informative 𝑘𝑘-itemsets from massive,
distributed, databases.

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Belief_propagation
https://en.wikipedia.org/wiki/Belief_propagation

International Journal of Scientific & Engineering Research, Volume 7, Issue 11, November-2016 4
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

5 CONCLUSIONS

In this paper, we proposed a reliable and
efficient parallel maximally informative 𝑘𝑘-itemset
algorithm namely PHIKS, that has shown
significant efficiency in terms of runtime and
scalability. PHIKS elegantly determines liki in very
large databases with at most two rounds. With
PHIKS, we propose a bunch of optimizing
techniques that renders the liki mining process very
fast. These techniques concern the architecture at a
global scale, but also the computation of entropy on
distributed nodes, at a local scale. The result is a
fast and efficient discovery of liki with high itemset
size. Such ability to use high itemset size is
mandatory when dealing with Big Data.

ACKNOWLEDGMENT

We would like to thank everyone who has
participated in the evaluation of the prototype
system. The authors aregrateful for the constructive
comments of the three referees on an earlier version
of this article. This research was supported in
different part by current business process at
different enterprises.

REFERENCES

[1] J. Han, Data mining : concepts and techniques.

Elsevier/Morgan Kaufmann, 2012.

[2] R. Agrawal and R. Srikant, “Fast algorithms for

mining association rules in large databases,” in

proceedings of International Conference on

very Large Data Bases (VLDB), 1994, pp.

[3] E. Greengrass, “Information retrieval: A

survey,” 2000.

[4] H. Heikinheimo, E. Hinkkanen, H. Mannila, T.

Mielikäinen, and J. K. Seppänen, “Finding low-

entropy sets and trees from binary data,” in

Proceedings of ACM SIGKDD International

Conference on Knowledge Discovery and Data

Mining (KDD), 2007, pp. 350–359.

[5] T. M. Cover, Elements of information theory.

Hoboken, N.J: WileyInterscience, 2006.

[6] P. Fournier-Viger, C. Wu, and V. S. Tseng, “Mining

top-k association rules,” in Proc. Int. Conf. Can. Conf.

 Adv. Artif. Intell., 2012, pp. 61–73.

[7] P. Fournier-Viger, C. Wu, and V. S. Tseng, “Novel

concise representations of high utility itemsets using

generator patterns,” in Proc. Int. Conf. Adv. Data

Mining Appl. Lecture Notes Comput.Sci., 2014, vol.

 8933, pp. 30–43.

[8] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns

without candidate generation,” in Proc. ACM

SIGMOD Int. Conf. Manag. Data, 2000, pp. 1–12.

[9] J. Han, J. Wang, Y. Lu, and P. Tzvetkov, “Mining top-

 K frequent closed patterns without minimum

support,” in Proc. IEEE Int. Conf. Data Mining, 2002,

[10] S. Krishnamoorthy, “Pruning strategies for mining

high utility itemsets,” Expert Syst. Appl., vol. 42, no.

5, pp. 2371–2381, 2015.

[11] C. Lin, T. Hong, G. Lan, J. Wong, and W. Lin,

 “Efficient updating of discovered high-utility itemsets

for transaction deletion in dynamic databases,” Adv.

 Eng. Informat., vol. 29, no. 1, pp. 16–27, 2015.

IJSER

http://www.ijser.org/

	1 introduction
	2 backgrounds
	3 phiks algorithm
	3.1 distributed projection counting
	3.2 discovering liki in two rounds
	4 forward backward algorithms
	5 conclusions
	Acknowledgment
	References

